
Chapter 6 Logarithmic and Exponential Functions

1. Find the exact solution of 32𝑥 − 3𝑥+1 − 4 = 0.

[4]

2. forℎ(𝑥) = 2𝑙𝑛(3𝑥 − 1) 𝑥 ≥ 2
3 .

The graph of intersects the line y = x at two distinct points. On the axes𝑦 = ℎ(𝑥) 

below, sketch the graph of and hence sketch the graph of𝑦 = ℎ(𝑥) 𝑦 = ℎ−1(𝑥)

[4]
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3. (a) Given that find the value of xy.𝑙𝑜𝑔
2
𝑥 + 2𝑙𝑜𝑔

4
𝑦 = 8,

[3]

(b) Using the substitution or otherwise, solve𝑦 = 2𝑥, 22𝑥+1 − 2𝑥+1 − 2𝑥 + 1 = 0.

[4]

The Maths Society

log,x +2log =
8

logc + log,

log,sy =8
8

xy
=2 =256

cy22y -y +1 =0
I

&Xi cy23y +1 =0
(2y -1)(y

- 1) =0

y =zor y
=1

2
=1

2x =t 2
x
=
20

2R = 2 x=0

x= - 1



4. (a) Solve the simultaneous equations

10𝑥+2𝑦 = 5,

103𝑥+4𝑦 = 50,

giving x and y in exact simplified form.

[4]

(b) Solve .2𝑥
2
3 − 𝑥

1
3 − 10 = 0

[3]
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5. where and𝑙𝑜𝑔
𝑎

𝑏 − 1
2 = 𝑙𝑜𝑔

𝑏
𝑎, 𝑎 > 0 𝑏 > 0.

Solve this equation for b, giving your answers in terms of a.

[5]

6. Solve the simultaneous equations.

𝑙𝑜𝑔
3
(𝑥 + 𝑦) = 2

2𝑙𝑜𝑔
3
(𝑥 + 1) = 𝑙𝑜𝑔

3
(𝑦 + 2)

[6]
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7. DO NOT USE A CALCULATOR IN THIS QUESTION.

𝑙𝑜𝑔
2
(𝑦 + 1) = 3 − 2𝑙𝑜𝑔

2
𝑥

𝑙𝑜𝑔
2
(𝑥 + 2) = 2 + 𝑙𝑜𝑔

2
𝑦

a. Show that 𝑥3 + 6𝑥2 − 32 = 0.

[4]
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b. Find the roots of 𝑥3 + 6𝑥2 − 32 = 0.

[4]

c. Give a reason why only one root is a valid solution of the logarithmic
equations. Find the value of y corresponding to this root.

[2]
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8. It is given that for .𝑓(𝑥) = 5𝑙𝑛(2𝑥 + 3) 𝑥 >− 3
2

a. Write down the range of 𝑓.
[1]

b. Find and state its domain.𝑓−1

[3]

c. On the axes below, sketch the graph of and the graph of𝑦 = 𝑓(𝑥) 

. Label each curve and state the intercepts on the coordinate𝑦 = 𝑓−1(𝑥)
axes.

[5]
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9. 𝑓(𝑥) = 4𝑙𝑛 (2𝑥 − 1)

a. Write down the largest possible domain for the function f.

[1]

b. Find and its domain.𝑓−1(𝑥)

[3]

10. Write as a single logarithm.3𝑙𝑔 𝑥 + 2 − 𝑙𝑔 𝑦

[3]
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11. The population P, in millions, of a country is given by , where t is the𝑃 = 𝐴 × 𝑏𝑡

number of years after January 2000 and A and b are constants. In January 2010 the
population was 40 million and had increased to 45 million by January 2013.

a. Show that b = 1.04 to 2 decimal places and find A to the nearest integer.

[4]

b. Find the population in January 2020, giving your answer to the nearest million.

[1]

c. In January of which year will the population be over 100 million for the first time?

[3]
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12. The number, b, of bacteria in a sample is given by where P and Q 𝑏 = 𝑃 + 𝑄𝑒2𝑡,
are constants and t is time in weeks. Initially there are 500 bacteria which increase to
600 after 1 week.

a. Find the value of P and of Q.

[4]

The Maths Society

b =P+aet
500 =P+Reo

P+a=500
-d

600 =P+ae
-500 =P +2
-

100 =
be?

100 =ace?1)

&
=
15.7

P =500 - 15.7

=484.3



b. Find the number of bacteria present after 2 weeks.

[1]

c. Find the first week in which the number of bacteria is greater than 1000000.

[3]
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